Code-modulated interferometric imaging system using phased arrays
نویسندگان
چکیده
Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and biomedical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Provided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.
منابع مشابه
Optical Physics of Imaging and Interferometric Phased Arrays
Microwave, submillimetre-wave, and far-infrared phased arrays are of considerable importance for astronomy. We consider the behaviour imaging phased arrays and interferometric phased arrays from a functional perspective. It is shown that the average powers, field correlations, power fluctuations, and correlations between power fluctuations at the output ports of an imaging or interferometric ph...
متن کاملPhase-Only Synthesis of Antenna Arrays Using Nonuniform Phased Sampling Method
Nonuniform Phased Sampling method is proposed to phase-only synthesize the power pattern of both linear and planar antenna arrays. This method modifies the conventional sampling method which is used for amplitude-phase synthesis. This method is based on assigning suitable phases to the sampling points of radiation pattern in order to reach desired amplitude of currents. Some examples are given ...
متن کاملQualification of Phased Arrays to ASME Section V and Other Codes
Phased arrays offer major advantages over conventional radiographic inspection of welds: no radiation hazard, chemical disposal or licensing requirements; no disruption of production; near real-time inspection results, plus vertical defect sizing for Engineering Critical Assessment. In comparison with conventional ultrasonics, phased arrays are significantly faster, more flexible, reproducible,...
متن کاملImprovement the reflection coefficient of Waveguide-Fed Phased-Array Antenna utilizing Liquid Crystal
Abstract— This work investigates the improvement of the active reflection coefficient of waveguide-fed phased-array antenna using liquid crystal layers. The anisotropy properties of liquid crystal layer can be employed to eliminate blind scan angle and improve the wide angle impedance matching of the waveguide-fed phased array antennas. The authors have expressed the modal analysis of the waveg...
متن کاملOptical Phased Array Using Single Crystalline Silicon High-Contrast- Gratings for Beamsteering
We present a single crystalline silicon optical phased array using high-contrast-gratings (HCG) for fast two dimensional beamforming and beamsteering at 0.5 MHz. Since there are various applications for beamforming and beamsteering such as 3D imaging, optical communications, and light detection and ranging (LIDAR), it is great interest to develop ultrafast optical phased arrays. However, the be...
متن کامل